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EPFL Normative frameworks

o T

Information theoretic Utilitarian
e.g. sparse coding, e.g. recognize objects,
redundancy reduction, chase prey, navigate ...

mutual information ...




=PrL Using deep neural networks as goal-driven models of a system

Model architecture class
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Vision: object recognition. Yamins & Dicarlo (2016) ™
b Yamins & Hong et al. (2014), Schrimpf & ] §ored
ili _ —n—— Language: next-word prediction.
KUbl-h-us et al. (2018) it :-Ala—: Schrimpf et al. (2021)
@ Audition: speech recognition, speaker & :
sound identification. Kell et al. (2018) ti Decision making: context-dependent
3 Somatosentation: shape recognition. choice. Mante & Sussilo et al. (2013)
Zhuang et al. (2017) Proprioception: action recognition.
- g Sandbrink et al. (2023)



=PrL

Recap from last week

= Difficult for a long time to scale models
beyond simple responses in V1
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representations
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Rajalingham*, Issa*, et al. (J/Neuro 2018)
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video courtesy of Kailyn Schmidt, MIT




=P7L  Core-object recognition and the visual pathway

Encoding Decoding

a Stimulus Neurons > Behavior
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Yamins and DiCarlo, Nat Neuro 2016



=Pl Model bullding

a Encoding Decoding
Stimulus Neurons > Behavior

Y

100-ms /

Pixels visual
presentation

Spatial convolution
over image input

——>

Filter

Yamins and DiCarlo, Nat Neuro 2016
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EPFL Benchmark

experimental
paradigm experiment

h é Model )

look_at(stimuli)

record(area)

\ J

data v prediction

Neural benchmark

similarity
score

neural predictivity




ePFL Neural alignment = alignment between
stimulus-matched recordings

Brain recordings Model units

stimuli

Neural benchmarks




=P*L " Representational similarity analysis (RSA)

dissimilarity matrix

RDM($(x)); =1~

cov(P(x:),9(x;))

V/ var(¢(x:)) var(¢(x;))

similarity-graph icon

compute dissimilarity
(1-correlation across space)

* “ activity patterns

t

brain or model

Kriegeskorte al. Frontiers in Systems Neuro 2008

experimental conditions




=PrL
Representational similarity analysis (RSA)

Brain recordings Model units

score = corr( RDM (

correlate upper
triangular only

Neural benchmarks




=PrL
neural predictivity

Brain recordings Model units

stimuli

Neural benchmarks




=PrL

neural predictivity

Brain recordings Model units

fit

regression weights

stimuli

Neural benchmarks

correlation predict held-out
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Yamins* Hong*, et al. 2014 Schrimpf*, Kubilius*, et al. 2018



https://www.pnas.org/doi/10.1073/pnas.1403112111
https://www.biorxiv.org/content/10.1101/407007

=Pl Model bullding

a Encoding Decoding
Stimulus Neurons > Behavior

Y

100-ms /

Pixels visual
presentation

Spatial convolution
over image input

——>

Filter

Yamins and DiCarlo, Nat Neuro 2016



=PrL  Convolutions

https://github.com/vdumoulin/conv_arithmetic

+ pooling + hierarchy
a BaSIC OQel’atIOI‘JS. @ = (Qﬁlier, chr, Qsat, 9poo|, Qnorm)
Filter Threshold & Pool Normalize
R, Saturate

®"_¢z — | )| — —»@

® . Neural-like basic operations

Vor \/@m \/
i RA

L1 \_\‘—: g
Hierarchical Stackin

+ error-based reweighting (adaboost)
—> task optimization

via lots of compute
(Pinto et al. 2009; Bergstra et al. 2013)



https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000579
https://proceedings.mlr.press/v28/bergstra13.html

=PrL

comparison
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=P7L  Task-trained models match brain’s “hidden neurons”

Yamins, Hong, Cadieu, and DiCarlo
NIPS (2013)

Yamins, Hong, Solomon, Seibert and
DiCarlo PNAS (2014)

Brain (IT) population patterns of activity
for ~2000 individual images

IT neural sites

One example IT neural site

\

Images tested

N

Response* of
IT neural site

Prediction of  Animals Boats Cars Chairs Faces Fruits Planes Tables
ANN model (“IT” layer)
B Slide from Jim DiCarlo, MIT



=PFL  Predictions for IT
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=PFL  Predictions fqu4
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Yamins & Hong et al., PNAS 2014



=PFL Hierarchy as a consequence of task-optimization

HCNN top
hidden layer
response
prediction IT site 56
IT neural
response
Test images (sorted by category)
c 50
2 50| Monkey V4 " Monkey IT
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- Yamins & Hong et al., PNAS 2014



=PrL  Category classification

Comparing to backprop-trained deep nets...

60 1
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40 +
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Accuracy (% correct)

20

Chance —
~ 0,
14/010_

0_

Cadieu et al. PLOS CB 2014



dissimilarity matrix

=P7L Model comparison
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=PFL  fMRI based analysis in humans
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=PrL

TOP 1 ACCURACY
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From papers with code

ImageNet challenge

mite

motor scooter

mite

black widow
cockroach
tick

starfish

=

ip

" lifeboat |
amphibian |

fireboat
drilling platform

‘motor scooter

moped
bumper car

golfcart

beach wagon
fire engine

agaric

mushroom

jelly fungus

gill fungus
dead-man's-fingers

elderberry

ffordshire bullterrier

currant

snow leopard
Egyptian cat

pider monkey
titi

indri

howler monkey




=prL Integrative testing of models on brain + behavioral data

Brain
, . _ brain areas behavior
fv1 V2 N
wissR ST TR [T Lin |
a2 I Il IH I e
. /7 Artificial neural network models
. f f * f * Trained for computational task,
Test alighment : : : . o
v v v v welghts optimized V|a kprop |
model layers : :

Model
Candidates

. ntraI ocsn stges
(hidden layers, “deep” learning)
- * Accept any new input (pixels)




=rrL  Test models’ alignment across visual ventral stream
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= 2 .2 Schrimpf*, Kubilius*, et al. (2018)
m ’ 2 V1, V2 data: Freeman*, Ziemba*, et al. (2013)
I : .0 V4, IT data: Majaj*, Hong*, et al. (2015)

000 behavioral data: Rajalingham?*, Issa*, et al. (2018)


https://arxiv.org/abs/1608.06993

neural recording (IT)
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al ventral stream

Model candidates tested:

classic neuroscience
hmax
model

Schrimpf*, Kubilius*, et al. (2018)

V1, V2 data: Freeman*, Ziemba*, et al. (2013)

V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)



https://arxiv.org/abs/1608.06993

=rrL  Test models’ alignment across visual ventral stream

Model candidates tested:

classic neuroscience
model

hmax
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’ V1, V2 data: Freeman*, Ziemba*, et al. (2013)

V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham?*, Issa*, et al. (2018)



https://arxiv.org/abs/1608.06993

Model candidates tested:

hmax

vgg-16
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Test models’ alignment across visual ventral stream
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https://arxiv.org/abs/1608.06993
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https://arxiv.org/abs/1608.06993

Model candidates tested:

hmax nasnet_large
vgg-16 nasnet_mobile
vgg-19 pnasnet_large
Vi V2 Va IT behavior gzz:g:g:m mq'"pf_'m v
densenet- All Computer Vision
4 a % iR mentllc S a0e. ;ﬁﬁ;ﬁﬂj models are trained on a

inception_ . . .

« Certain artificial neural networks et :jaik without biological

i mo iene_ a a
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000 behavioral data: Rajalingham*, Issa*, et al. (2018)


https://arxiv.org/abs/1608.06993

=rrL. What explains the model differences?

Brain-Score

.25

&~ one model

Schrimpf*, Kubilius*, et al. 2018



https://arxiv.org/abs/1608.06993

=rrL. What explains the model differences?

.35

Brain-Score

.25

Normative variable

cf. Yamins*, Hong*, et al. 2014
Schrimpf*, Kubilius*, et al. 2018



https://arxiv.org/abs/1608.06993

=rrL. What explains the model differences?

Not the small-scale circuits

We are 5 h K
@ far from o utfrat er tas
4 done! DR performance, as a
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B S e o * e’ architecture +
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(XX L ] L4
(XY} ]
(X X} .
 }
0 2 4 .6 .8
- Object classification performance (ML goal)@v Schrimpf*, Kubilius*, et al. (2018)
Kubilius*, Schrimpf*, et al. (2019)



https://arxiv.org/abs/1608.06993

=PrL

Brain-Score
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Schrimpf & Kubilius et al. 2018, 2020



Rank
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:: Brain-Score 100+ brain & behavior benchmarks, 300+ models

e.g. neural predictions for different image sets, distributional alignments such as spatial
frequency, behavioral generalization, ...

www.Brain-Score.org
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"L The reverse engineering principle

Brain | , "
science | ‘Understanding
m

spec /-\mfasur y
& (2]

model =

©

w7/

Human Core Gei Somo Optimize
: : measurements of models under
Visual Object . :
Perception internal system the constraints
components that of the task and
are relevant to that the brain
performance. measurements.

Choose wisely.

B Slide from Jim DiCarlo, MIT



=PFL Feed-forward and recurrent processing

= So far, we have considered the visual system as a hierarchical feed-forward
feature encoder

= But: many connections in the brain are recurrent (depending on the area
thought to make up even 80% of all connections)

Area V2
AT TR
Th "‘:J\ b
.= - . e V4
BEeRIE by s & Vi
R : ! 4
a il * DL (V1+V4)
. - ™ . 5
200 ym

E.g., here with retrograde
injections: many feedback

connections from V4 onto V2
Rockland 2022



https://pmc.ncbi.nlm.nih.gov/articles/PMC8831541

=F7L  Recurrent processing In the visual system

B whole high occlusion low occlusion label

animal

response response

= Humans can classify images
better the more visible they

i
. 80 . . are
£ 60 = = Backward mask: thought to
E - |5 disrupt recurrent processing
= & = With backward masking,
’ performance drops at short
0 F—r — T3 0 T presentation times

0 10 20 30 100 0 10 20 30 100

Percent Visible i Percent Visible Tang & Schrimpf & Lotter et al. 2018



https://www.pnas.org/doi/10.1073/pnas.1719397115

- Recurrent processing In the visual system

Electrode in left fusiform gyrus (face-selective)

350

0

IFP (uV)

-350 T

Time (ms)

Higher neural latency
during occluded
image presentation
- stronger effect of
masking on behavior

Masking Index

T
-4 -2 0 2
Neural Latency (z-score)

Tang & Schrimpf & Lotter et al. 2018



https://www.pnas.org/doi/10.1073/pnas.1719397115

Challenge images

=PFL Recurrent processing in primate IT
= Model-guided stimulus selection: choose images where a =yl

feed-forward model struggles, but humans perform well.

Behavioral comparison
monkeys vs DCNN Elephant Chair

Object discrimination task

11,500 ms

E >5 . as R EEsE WS mesmser = e . - ) !
Q } * - .. 1 N
3 | . * . ) .
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: il W
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100 ms, 8° Qo M* Ry sl Dag Apple
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[ + .. .a' Il "
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S R Y A
. ge} . 3 c
Object @ - 0 Elephant Chair
choices © °
o]
o

- Kar et al. 2019

AlexNet berformance (d’)


http://www.nature.com/articles/s41593-019-0392-5

=PrL

NDA (d)

= OST = object
solution time.
When are
categories
decodable
from IT

Time from sample onset (ms)
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Recurrent processing in primate IT

= Some images
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o
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Kar et al. 2019



http://www.nature.com/articles/s41593-019-0392-5

=F7L  Recurrent processing Iin primate IT

0ST - :
1 Primate v = Control images are = Challenge images
| couracy solved quickly require more processing
S
<
a
=
= OST = object
solution time. —
When are 2
categories &
decodable g behavioral accuracy
from IT ]
& —’
2 \
3
3 T T 1
o o0 100 200 300
@ time from image onset _—

Kar et al. 2019

Time from sample onset (ms)


http://www.nature.com/articles/s41593-019-0392-5

o Modeling recurrence: transform feed-forward

networks into recurrent mode

1. difficult to

map anatomy 2. no temporal

responses
?
e.g. ResNet-101 V4 ° I¢T?
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=PrL

Transform feed-forward networks into Aa
recurrent models
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prediction
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e.g. Hg, Zhang, Ren, Sun (CVPR 2016) Liang & Hu (CVPR 2015) Liao & Poggio (arXiv 2016) Tang*, Schrimpf*,
Huang, Liu, van der Maaten, Weinberger (CVPR 2017) Lotter* et al. (PNAS 2018) Nayebi*, Bear*, Kubilius* et al. (NIPS 2018)



https://arxiv.org/abs/1608.06993

=PFL  Modeling recurrence: transform feed-forward
networks into recurrent models: CORnet

Kubi/i:ls*, Schrimpf*, et al. (NeurlPS 2019)



https://arxiv.org/abs/1608.06993

=F*L Recurrent CORnet model: compact architecture
via recurrence

L
ol On
Z ©
conv gate
input —».—4»@&;;.—}»_\:@\? output
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~ state
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Kubilius * Schrimpf*, et al. (NeurlPS 2019) CORnet-S Area Circuitry



https://arxiv.org/abs/1608.06993

=PFL  Recurrent model predicts temporal dynamics in IT

)]
(4]
£ 150
5 145 score: 0.3 -
4:‘_'5 Lp”.
L_cg 140 ® ”’
) 5135 -~
— 2 - " When the brain’s IT is fast to
O -8 130 . ,
© q process images, CORnet’s
3 % 125 IT-layer is also fast
8 IE 120
o ~ 100 120 140 160
._g ITcor Object solution times
Q
3 I T T
Q 0 100 200 300 Unlike feedforward models,
@ time from image onset —_— CORnet-S can predict neural

responses over time.

Kar, Kubilius, Schmidt, Issa, DiCarlo (Nature Neuroscience 2019) Kubilius*, Schrimpf*, et al. (NeurlPS 2019)



https://doi.org/10.1038/s41593-019-0392-5
https://arxiv.org/abs/1608.06993

=PFL  Take-home messages

* Reverse engineering principle

* Representation learning with goal-driven / task-driven learning provides a normative
framework for studying the nervous system.

« Models trained on object-recognition can predict neural activity in ventral pathway
during object recognition well. Outperforming previous models by a large margin.

« The work by Yamins, Hong, DiCarlo and collaborators highly influenced vision
research and inspired much other work beyond vision.

« Recurrent processing is recruited for more challenging images. Compact recurrent
models explain the brain’s temporal dynamics to a first extent.

* In the exercises you'll recap linear probing & explained variance. Next you'll start a
mini-project modeling IT neurons!
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