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Biological Intelligence Artificial Intelligence

Hausmann & Marin-Vargas et al., 2021



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate …

Normative frameworks



Vision: object recognition. 
Yamins & Hong et al. (2014), Schrimpf & 
Kubilius et al. (2018)

Audition: speech recognition, speaker & 
sound identification. Kell et al. (2018)

Somatosentation: shape recognition. 
Zhuang et al. (2017) Proprioception: action recognition. 

Sandbrink et al. (2023)

Decision making: context-dependent 
choice. Mante & Sussilo et al. (2013)

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 

Language: next-word prediction. 
Schrimpf et al. (2021)



▪ Difficult for a long time to scale models 
beyond simple responses in V1

▪ IT –linear-readout→ object category

▪ Task optimization → brain-like internal 
representations
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Rajalingham*, Issa*, et al. (JNeuro 2018)
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video courtesy of Kailyn Schmidt, MIT



Core-object recognition and the visual pathway

Yamins and DiCarlo, Nat Neuro 2016



Model building

Yamins and DiCarlo, Nat Neuro 2016
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Neural alignment = alignment between 
stimulus-matched recordings



Representational similarity analysis (RSA)

Kriegeskorte al. Frontiers in Systems Neuro 2008
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regression weights

predict held-outcorrelation

Yamins*, Hong*, et al. 2014 Schrimpf*, Kubilius*, et al. 2018

https://www.pnas.org/doi/10.1073/pnas.1403112111
https://www.biorxiv.org/content/10.1101/407007


Model building

Yamins and DiCarlo, Nat Neuro 2016



Convolutions

https://github.com/vdumoulin/conv_arithmetic

+ pooling + hierarchy

+ error-based reweighting (adaboost) 
→ task optimization

via lots of compute 
(Pinto et al. 2009; Bergstra et al. 2013)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000579
https://proceedings.mlr.press/v28/bergstra13.html


Large scale architecture search and model 
comparison

Performance for object recognition

Yamins & Hong et al., PNAS 2014



Task-trained models match brain’s “hidden neurons”

Slide from Jim DiCarlo, MIT



Predictions for IT

Yamins & Hong et al., PNAS 2014



Predictions for V4

Yamins & Hong et al., PNAS 2014



Hierarchy as a consequence of task-optimization

Yamins & Hong et al., PNAS 2014



Category classification

Cadieu et al. PLOS CB 2014

Comparing to backprop-trained deep nets…



Model comparison

Cadieu et al. Plos CB 2014

Backprop on ImageNet is much better than HMO.
Computer Vision – “as a side effect” – revolutionized 
modeling primate vision!



fMRI based analysis in humans

Khaligh-Razavi and Kiegeskorte PloS CB 2014



▪ Work on 12 exciting projects

▪ Develop new skills 

▪ Collaborate with like-minded people

▪ Get expert mentorship

▪ Get inspired by talks from Alumni

▪ Pitch projects and win prizes

▪ Have fun during your

Easter break 



ImageNet challenge
1000 classes 
1.2 training images 
150,000 test images

AlexNet predictions

Krizhevsky, Sutskever, Hinton, NeurIPS 2012From papers with code



V1

V2

V4

IT

Integrative testing of models on brain + behavioral data

V4 ITV2V1

Artificial neural network models
• Trained for computational task, 

weights optimized via backprop

• Internal processing stages 
(hidden layers, “deep” learning)

• Accept any new input (pixels)

Test alignment
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Test models’ alignment across visual ventral stream

V1

V2

V4

IT
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V4 IT behaviorV2V1

Schrimpf*, Kubilius*, et al. (2018)
V1, V2 data: Freeman*, Ziemba*, et al. (2013)
V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)

https://arxiv.org/abs/1608.06993
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Test models’ alignment across visual ventral stream

V1
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V4

IT

Model candidates tested:

hmax
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classic neuroscience 
model

Schrimpf*, Kubilius*, et al. (2018)
V1, V2 data: Freeman*, Ziemba*, et al. (2013)
V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)

model predictions

n
eu

ra
l r

ec
o

rd
in

g 
(I

T)

https://arxiv.org/abs/1608.06993
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Schrimpf*, Kubilius*, et al. (2018)
V1, V2 data: Freeman*, Ziemba*, et al. (2013)
V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)

https://arxiv.org/abs/1608.06993


Test models’ alignment across visual ventral stream

V1

V2

V4

IT

Model candidates tested:

hmax
vgg-16
vgg-19
densenet-121
densenet-169
densenet-201
inception_resnet_v2
inception_v1
inception_v2
inception_v3
inception_v4
mobilenet_v1_0.25_128
mobilenet_v1_0.25_160
mobilenet_...
mobilenet_v2_1.3_224
mobilenet_v2_1.4_224

nasnet_large
nasnet_mobile
pnasnet_large
resnet-101_v1
resnet-101_v2
resnet-152_v1
resnet-152_v2
resnet-18
resnet-34
resnet-50_v1
resnet-50_v2
squeezenet1_0
squeezenet1_1
xception
…
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ML models

Schrimpf*, Kubilius*, et al. (2018)
V1, V2 data: Freeman*, Ziemba*, et al. (2013)
V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)

https://arxiv.org/abs/1608.06993


Test models’ alignment across visual ventral stream

V1

V2

V4

IT

Model candidates tested:

hmax
vgg-16
vgg-19
densenet-121
densenet-169
densenet-201
inception_resnet_v2
inception_v1
inception_v2
inception_v3
inception_v4
mobilenet_v1_0.25_128
mobilenet_v1_0.25_160
mobilenet_...
mobilenet_v2_1.3_224
mobilenet_v2_1.4_224

nasnet_large
nasnet_mobile
pnasnet_large
resnet-101_v1
resnet-101_v2
resnet-152_v1
resnet-152_v2
resnet-18
resnet-34
resnet-50_v1
resnet-50_v2
squeezenet1_0
squeezenet1_1
xception
…

V4 IT behaviorV2V1

Schrimpf*, Kubilius*, et al. (bioRxiv 2018)
V1, V2 data: Freeman*, Ziemba*, et al. (NatNeuro 2013)
V4, IT data: Majaj*, Hong*, et al. (JNeuro 2015)
behavioral data: Rajalingham*, Issa*, et al. (JNeuro 2018)
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Test models’ alignment across visual ventral stream
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ML modelsCertain artificial neural networks 
are state-of-the-art models of 
neural and behavioral alignment
(not perfect)

All Computer Vision 
models are trained on a 
task without biological 
data

Schrimpf*, Kubilius*, et al. (2018)
V1, V2 data: Freeman*, Ziemba*, et al. (2013)
V4, IT data: Majaj*, Hong*, et al. (2015)
behavioral data: Rajalingham*, Issa*, et al. (2018)

https://arxiv.org/abs/1608.06993


Schrimpf*, Kubilius*, et al. 2018

one model

What explains the model differences?

https://arxiv.org/abs/1608.06993


What explains the model differences?

Schrimpf*, Kubilius*, et al. 2018Normative variable
cf. Yamins*, Hong*, et al. 2014

https://arxiv.org/abs/1608.06993


What explains the model differences?

Schrimpf*, Kubilius*, et al. (2018)
Kubilius*, Schrimpf*, et al. (2019)

r = .9

Object classification performance (ML goal)

But rather task 
performance, as a 
combination of 
architecture + 
optimization

We are 
far from 
done!

Not the small-scale circuits

https://arxiv.org/abs/1608.06993


Schrimpf & Kubilius et al. 2018, 2020

Correlation between task performance
and brain alignment disappears at very 
high performance levels



100+ brain & behavior benchmarks, 300+ models
e.g. neural predictions for different image sets, distributional alignments such as spatial 
frequency, behavioral generalization, …

www.Brain-Score.org



The reverse engineering principle 

Slide from Jim DiCarlo, MIT



Feed-forward and recurrent processing

Rockland 2022

E.g., here with retrograde 
injections: many feedback 
connections from V4 onto V2

▪ So far, we have considered the visual system as a hierarchical feed-forward
feature encoder

▪ But: many connections in the brain are recurrent (depending on the area 
thought to make up even 80% of all connections)

https://pmc.ncbi.nlm.nih.gov/articles/PMC8831541


Tang & Schrimpf & Lotter et al. 2018

▪ Humans can classify images 
better the more visible they 
are

▪ Backward mask: thought to
disrupt recurrent processing

▪ With backward masking,
performance drops at short 
presentation times

Recurrent processing in the visual system

https://www.pnas.org/doi/10.1073/pnas.1719397115


Recurrent processing in the visual system

Tang & Schrimpf & Lotter et al. 2018

Electrode in left fusiform gyrus (face-selective)

Higher neural latency 
during occluded 
image presentation 
→ stronger effect of 
masking on behavior

https://www.pnas.org/doi/10.1073/pnas.1719397115


▪ Model-guided stimulus selection: choose images where a 
feed-forward model struggles, but humans perform well.

Recurrent processing in primate IT

Kar et al. 2019

http://www.nature.com/articles/s41593-019-0392-5


Recurrent processing in primate IT

Kar et al. 2019
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▪ Some images 
are “solve ” 
quickly by IT

▪ Some images 
are more 
challenging

▪ OST = object 
solution time. 
When are 
categories 
decodable 
from IT

http://www.nature.com/articles/s41593-019-0392-5


Recurrent processing in primate IT

Kar et al. 2019

▪ Control images are 
solved quickly

▪ OST = object 
solution time. 
When are 
categories 
decodable 
from IT

time from image onset
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behavioral accuracy

“face” “zebra” “car” “dog”

…

▪ Challenge images 
require more processing

http://www.nature.com/articles/s41593-019-0392-5


Modeling recurrence: transform feed-forward 
networks into recurrent models

V1

V2

V4

IT

1. difficult to 
map anatomy 2. no temporal 

responses

e.g. ResNet-101 V4? IT?
𝑊𝟏,1 𝑊𝟏 ,2 𝑊𝟏 ,3

𝑊𝟏 ,5 𝑊𝟏 ,6 𝑊𝟐 ,1 𝑊𝟐 ,2 𝑊𝟐 ,3
𝑊𝟐 ,11 𝑊𝟐 ,11 𝑊𝟑 ,1 𝑊𝟑 ,2 𝑊𝟑 ,3

𝑊𝟑 ,31 𝑊𝟑 ,32 𝑊𝟒 ,1 𝑊𝟒 ,2 𝑊𝟒 ,3
𝑊𝟒 ,11 𝑊𝟒 ,12𝑊𝟏 ,... 𝑊𝟐 ,...

𝑊𝟑 ,... 𝑊𝟒 ,...



Transform feed-forward networks into 
recurrent models

e.g. He, Zhang, Ren, Sun (CVPR 2016) 
Huang, Liu, van der Maaten, Weinberger (CVPR 2017)

Liang & Hu (CVPR 2015)    Liao & Poggio (arXiv 2016)    Tang*, Schrimpf*, 
Lotter* et al. (PNAS 2018)    Nayebi*, Bear*, Kubilius* et al. (NIPS 2018)

𝑊𝟏 ,1 𝑊𝟏 ,2 𝑊𝟏 ,3
𝑊𝟏 ,5 𝑊𝟏 ,6 𝑊1

𝑊2

𝑊3

𝑊4

𝑊𝟐 ,1 𝑊𝟐 ,2 𝑊𝟐 ,3
𝑊𝟐 ,11 𝑊𝟐 ,11

𝑊𝟑 ,1 𝑊𝟑 ,2 𝑊𝟑 ,3
𝑊𝟑 ,31 𝑊𝟑 ,32

𝑊𝟒 ,1 𝑊𝟒 ,2 𝑊𝟒 ,3
𝑊𝟒 ,11 𝑊𝟒 ,12

𝑊𝟏 ,...

𝑊𝟐 ,...

𝑊𝟑 ,...

𝑊𝟒 ,...

https://arxiv.org/abs/1608.06993


Modeling recurrence: transform feed-forward 
networks into recurrent models: CORnet

𝑊
1

𝑊
2

𝑊
3

𝑊
4

Kubilius*, Schrimpf*, et al. (NeurIPS 2019)
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https://arxiv.org/abs/1608.06993


Recurrent CORnet model: compact architecture 
via recurrence
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Kubilius*, Schrimpf*, et al. (NeurIPS 2019)

https://arxiv.org/abs/1608.06993
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Recurrent model predicts temporal dynamics in IT

Kar, Kubilius, Schmidt, Issa, DiCarlo (Nature Neuroscience 2019)

behavioral accuracy

Unlike feedforward models, 
CORnet-S can predict neural 
responses over time.

“face” “zebra” “car” “dog”

…

When the brain’s IT is fast to 
process images, CORnet’s
IT-layer is also fast

score: 0.3

Kubilius*, Schrimpf*, et al. (NeurIPS 2019)

https://doi.org/10.1038/s41593-019-0392-5
https://arxiv.org/abs/1608.06993


• Reverse engineering principle 

• Representation learning with goal-driven / task-driven learning provides a normative 
framework for studying the nervous system. 

• Models trained on object-recognition can predict neural activity in ventral pathway 
during object recognition well. Outperforming previous models by a large margin.

• The work by Yamins, Hong, DiCarlo and collaborators highly influenced vision 
research and inspired much other work beyond vision. 

• Recurrent processing is recruited for more challenging images. Compact recurrent 
mo els explain the brain’s temporal  ynamics to a first extent 

•  n the exercises you’ll recap linear probing & explaine  variance  Next you’ll start a 
mini-project modeling IT neurons!

Take-home messages
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